Abstract:A reliable, remote, and continuous real-time respiratory sound monitor with automated respiratory sound analysis ability is urgently required in many clinical scenarios-such as in monitoring disease progression of coronavirus disease 2019-to replace conventional auscultation with a handheld stethoscope. However, a robust computerized respiratory sound analysis algorithm has not yet been validated in practical applications. In this study, we developed a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686 stridor labels, and 4,740 rhonchi labels), and 15,606 discontinuous adventitious sound labels (all crackles). We conducted benchmark tests for long short-term memory (LSTM), gated recurrent unit (GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional neural network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath phase detection and adventitious sound detection. We also conducted a performance comparison between the LSTM-based and GRU-based models, between unidirectional and bidirectional models, and between models with and without a CNN. The results revealed that these models exhibited adequate performance in lung sound analysis. The GRU-based models outperformed, in terms of F1 scores and areas under the receiver operating characteristic curves, the LSTM-based models in most of the defined tasks. Furthermore, all bidirectional models outperformed their unidirectional counterparts. Finally, the addition of a CNN improved the accuracy of lung sound analysis, especially in the CAS detection tasks.
Abstract:Respiratory auscultation can help healthcare professionals detect abnormal respiratory conditions if adventitious lung sounds are heard. The state-of-the-art artificial intelligence technologies based on deep learning show great potential in the development of automated respiratory sound analysis. To train a deep learning-based model, a huge number of accurate labels of normal breath sounds and adventitious sounds are needed. In this paper, we demonstrate the work of developing a respiratory sound labeling software to help annotators identify and label the inhalation, exhalation, and adventitious respiratory sound more accurately and quickly. Our labeling software integrates six features from MATLAB Audio Labeler, and one commercial audio editor, RX7. As of October, 2019, we have labeled 9,765 15-second-long audio files of breathing lung sounds, and accrued 34,095 inhalation labels,18,349 exhalation labels, 13,883 continuous adventitious sounds (CASs) labels and 15,606 discontinuous adventitious sounds (DASs) labels, which are significantly larger than previously published studies. The trained convolutional recurrent neural networks based on these labels showed good performance with F1-scores of 86.0% on inhalation event detection, 51.6% on CASs event detection and 71.4% on DASs event detection. In conclusion, our results show that our proposed respiratory sound labeling software could easily pre-define a label, perform one-click labeling, and overall facilitate the process of accurately labeling. This software helps develop deep learning-based models that require a huge amount of labeled acoustic data.