Abstract:Large Language Models (LLMs) often suffer from catastrophic forgetting when learning multiple tasks sequentially, making continual learning (CL) essential for their dynamic deployment. Existing state-of-the-art (SOTA) methods, such as O-LoRA, typically focus on constructing orthogonality tasks to decouple parameter interdependence from various domains.In this paper, we reveal that building non-collision parameters is a more critical factor in addressing CL challenges. Our theoretical and experimental analyses demonstrate that non-collision parameters can provide better task orthogonality, which is a sufficient but unnecessary condition. Furthermore, knowledge from multiple domains will be preserved in non-collision parameter subspaces, making it more difficult to forget previously seen data. Leveraging this insight, we propose Non-collision Low-Rank Adaptation (N-LoRA), a simple yet effective approach leveraging low collision rates to enhance CL in LLMs. Experimental results on multiple CL benchmarks indicate that N-LoRA achieves superior performance (+2.9), higher task orthogonality (*4.1 times), and lower parameter collision (*58.1 times) than SOTA methods.