Abstract:Extraction of building footprint polygons from remotely sensed data is essential for several urban understanding tasks such as reconstruction, navigation, and mapping. Despite significant progress in the area, extracting accurate polygonal building footprints remains an open problem. In this paper, we introduce Pix2Poly, an attention-based end-to-end trainable and differentiable deep neural network capable of directly generating explicit high-quality building footprints in a ring graph format. Pix2Poly employs a generative encoder-decoder transformer to produce a sequence of graph vertex tokens whose connectivity information is learned by an optimal matching network. Compared to previous graph learning methods, ours is a truly end-to-end trainable approach that extracts high-quality building footprints and road networks without requiring complicated, computationally intensive raster loss functions and intricate training pipelines. Upon evaluating Pix2Poly on several complex and challenging datasets, we report that Pix2Poly outperforms state-of-the-art methods in several vector shape quality metrics while being an entirely explicit method. Our code is available at https://github.com/yeshwanth95/Pix2Poly.
Abstract:Recent advancements in deep learning and computer vision have led to widespread use of deep neural networks to extract building footprints from remote-sensing imagery. The success of such methods relies on the availability of large databases of high-resolution remote sensing images with high-quality annotations. The CrowdAI Mapping Challenge Dataset is one of these datasets that has been used extensively in recent years to train deep neural networks. This dataset consists of $ \sim\ $280k training images and $ \sim\ $60k testing images, with polygonal building annotations for all images. However, issues such as low-quality and incorrect annotations, extensive duplication of image samples, and data leakage significantly reduce the utility of deep neural networks trained on the dataset. Therefore, it is an imperative pre-condition to adopt a data validation pipeline that evaluates the quality of the dataset prior to its use. To this end, we propose a drop-in pipeline that employs perceptual hashing techniques for efficient de-duplication of the dataset and identification of instances of data leakage between training and testing splits. In our experiments, we demonstrate that nearly 250k($ \sim\ $90%) images in the training split were identical. Moreover, our analysis on the validation split demonstrates that roughly 56k of the 60k images also appear in the training split, resulting in a data leakage of 93%. The source code used for the analysis and de-duplication of the CrowdAI Mapping Challenge dataset is publicly available at https://github.com/yeshwanth95/CrowdAI_Hash_and_search .