Abstract:Thermal infrared (TIR) image has proven effectiveness in providing temperature cues to the RGB features for multispectral pedestrian detection. Most existing methods directly inject the TIR modality into the RGB-based framework or simply ensemble the results of two modalities. This, however, could lead to inferior detection performance, as the RGB and TIR features generally have modality-specific noise, which might worsen the features along with the propagation of the network. Therefore, this work proposes an effective and efficient cross-modality fusion module called Bi-directional Adaptive Attention Gate (BAA-Gate). Based on the attention mechanism, the BAA-Gate is devised to distill the informative features and recalibrate the representations asymptotically. Concretely, a bi-direction multi-stage fusion strategy is adopted to progressively optimize features of two modalities and retain their specificity during the propagation. Moreover, an adaptive interaction of BAA-Gate is introduced by the illumination-based weighting strategy to adaptively adjust the recalibrating and aggregating strength in the BAA-Gate and enhance the robustness towards illumination changes. Considerable experiments on the challenging KAIST dataset demonstrate the superior performance of our method with satisfactory speed.