Abstract:Despite its prevalence, giving up and starting over may seem wasteful in many situations such as searching for a target or training deep neural networks (DNNs). Our study, though, demonstrates that restarting from a checkpoint can significantly improve generalization performance when training DNNs with noisy labels. In the presence of noisy labels, DNNs initially learn the general patterns of the data but then gradually overfit to the noisy labels. To combat this overfitting phenomenon, we developed a method based on stochastic restarting, which has been actively explored in the statistical physics field for finding targets efficiently. By approximating the dynamics of stochastic gradient descent into Langevin dynamics, we theoretically show that restarting can provide great improvements as the batch size and the proportion of corrupted data increase. We then empirically validate our theory, confirming the significant improvements achieved by restarting. An important aspect of our method is its ease of implementation and compatibility with other methods, while still yielding notably improved performance. We envision it as a valuable tool that can complement existing methods for handling noisy labels.
Abstract:Recent studies to learn physical laws via deep learning attempt to find the shared representation of the given system by introducing physics priors or inductive biases to the neural network. However, most of these approaches tackle the problem in a system-specific manner, in which one neural network trained to one particular physical system cannot be easily adapted to another system governed by a different physical law. In this work, we use a meta-learning algorithm to identify the general manifold in neural networks that represents Hamilton's equation. We meta-trained the model with the dataset composed of five dynamical systems each governed by different physical laws. We show that with only a few gradient steps, the meta-trained model adapts well to the physical system which was unseen during the meta-training phase. Our results suggest that the meta-trained model can craft the representation of Hamilton's equation in neural networks which is shared across various dynamical systems with each governed by different physical laws.