Aalto University, Espoo, Finland
Abstract:Vision-language models (VLMs) have demonstrated impressive zero-shot transfer capabilities in image-level visual perception tasks. However, they fall short in 3D instance-level segmentation tasks that require accurate localization and recognition of individual objects. To bridge this gap, we introduce a novel 3D Gaussian Splatting based hard visual prompting approach that leverages camera interpolation to generate diverse viewpoints around target objects without any 2D-3D optimization or fine-tuning. Our method simulates realistic 3D perspectives, effectively augmenting existing hard visual prompts by enforcing geometric consistency across viewpoints. This training-free strategy seamlessly integrates with prior hard visual prompts, enriching object-descriptive features and enabling VLMs to achieve more robust and accurate 3D instance segmentation in diverse 3D scenes.
Abstract:Visual localization involves estimating the 6-degree-of-freedom (6-DoF) camera pose within a known scene. A critical step in this process is identifying pixel-to-point correspondences between 2D query images and 3D models. Most advanced approaches currently rely on extensive visual descriptors to establish these correspondences, facing challenges in storage, privacy issues and model maintenance. Direct 2D-3D keypoint matching without visual descriptors is becoming popular as it can overcome those challenges. However, existing descriptor-free methods suffer from low accuracy or heavy computation. Addressing this gap, this paper introduces the Angle-Annular Graph Neural Network (A2-GNN), a simple approach that efficiently learns robust geometric structural representations with annular feature extraction. Specifically, this approach clusters neighbors and embeds each group's distance information and angle as supplementary information to capture local structures. Evaluation on matching and visual localization datasets demonstrates that our approach achieves state-of-the-art accuracy with low computational overhead among visual description-free methods. Our code will be released on https://github.com/YejunZhang/a2-gnn.