Abstract:We present a novel quantum algorithm for estimating Gibbs partition functions in sublinear time with respect to the logarithm of the size of the state space. This is the first speed-up of this type to be obtained over the seminal nearly-linear time algorithm of \v{S}tefankovi\v{c}, Vempala and Vigoda [JACM, 2009]. Our result also preserves the quadratic speed-up in precision and spectral gap achieved in previous work by exploiting the properties of quantum Markov chains. As an application, we obtain new polynomial improvements over the best-known algorithms for computing the partition function of the Ising model, and counting the number of $k$-colorings, matchings or independent sets of a graph. Our approach relies on developing new variants of the quantum phase and amplitude estimation algorithms that return nearly unbiased estimates with low variance and without destroying their initial quantum state. We extend these subroutines into a nearly unbiased quantum mean estimator that reduces the variance quadratically faster than the classical empirical mean. No such estimator was known to exist prior to our work. These properties, which are of general interest, lead to better convergence guarantees within the paradigm of simulated annealing for computing partition functions.
Abstract:We propose the first near-optimal quantum algorithm for estimating in Euclidean norm the mean of a vector-valued random variable with finite mean and covariance. Our result aims at extending the theory of multivariate sub-Gaussian estimators to the quantum setting. Unlike classically, where any univariate estimator can be turned into a multivariate estimator with at most a logarithmic overhead in the dimension, no similar result can be proved in the quantum setting. Indeed, Heinrich ruled out the existence of a quantum advantage for the mean estimation problem when the sample complexity is smaller than the dimension. Our main result is to show that, outside this low-precision regime, there is a quantum estimator that outperforms any classical estimator. Our approach is substantially more involved than in the univariate setting, where most quantum estimators rely only on phase estimation. We exploit a variety of additional algorithmic techniques such as amplitude amplification, the Bernstein-Vazirani algorithm, and quantum singular value transformation. Our analysis also uses concentration inequalities for multivariate truncated statistics. We develop our quantum estimators in two different input models that showed up in the literature before. The first one provides coherent access to the binary representation of the random variable and it encompasses the classical setting. In the second model, the random variable is directly encoded into the phases of quantum registers. This model arises naturally in many quantum algorithms but it is often incomparable to having classical samples. We adapt our techniques to these two settings and we show that the second model is strictly weaker for solving the mean estimation problem. Finally, we describe several applications of our algorithms, notably in measuring the expectation values of commuting observables and in the field of machine learning.
Abstract:We present a new quantum algorithm for estimating the mean of a real-valued random variable obtained as the output of a quantum computation. Our estimator achieves a nearly-optimal quadratic speedup over the number of classical i.i.d. samples needed to estimate the mean of a heavy-tailed distribution with a sub-Gaussian error rate. This result subsumes (up to logarithmic factors) earlier works on the mean estimation problem that were not optimal for heavy-tailed distributions [BHMT02,BDGT11], or that require prior information on the variance [Hein02,Mon15,HM19]. As an application, we obtain new quantum algorithms for the $(\epsilon,\delta)$-approximation problem with an optimal dependence on the coefficient of variation of the input random variable.
Abstract:Submodular functions are set functions mapping every subset of some ground set of size $n$ into the real numbers and satisfying the diminishing returns property. Submodular minimization is an important field in discrete optimization theory due to its relevance for various branches of mathematics, computer science and economics. The currently fastest strongly polynomial algorithm for exact minimization [LSW15] runs in time $\widetilde{O}(n^3 \cdot \mathrm{EO} + n^4)$ where $\mathrm{EO}$ denotes the cost to evaluate the function on any set. For functions with range $[-1,1]$, the best $\epsilon$-additive approximation algorithm [CLSW17] runs in time $\widetilde{O}(n^{5/3}/\epsilon^{2} \cdot \mathrm{EO})$. In this paper we present a classical and a quantum algorithm for approximate submodular minimization. Our classical result improves on the algorithm of [CLSW17] and runs in time $\widetilde{O}(n^{3/2}/\epsilon^2 \cdot \mathrm{EO})$. Our quantum algorithm is, up to our knowledge, the first attempt to use quantum computing for submodular optimization. The algorithm runs in time $\widetilde{O}(n^{5/4}/\epsilon^{5/2} \cdot \log(1/\epsilon) \cdot \mathrm{EO})$. The main ingredient of the quantum result is a new method for sampling with high probability $T$ independent elements from any discrete probability distribution of support size $n$ in time $O(\sqrt{Tn})$. Previous quantum algorithms for this problem were of complexity $O(T\sqrt{n})$.