Abstract:The extended near-field range in future mm-Wave and sub-THz wireless networks demands a precise and efficient near-field channel simulator for understanding and optimizing wireless communications in this less-explored regime. This paper presents NirvaWave, a novel near-field channel simulator, built on scalar diffraction theory and Fourier principles, to provide precise wave propagation response in complex wireless mediums under custom user-defined transmitted EM signals. NirvaWave offers an interface for investigating novel near-field wavefronts, e.g., Airy beams, Bessel beams, and the interaction of mmWave and sub-THz signals with obstructions, reflectors, and scatterers. The simulation run-time in NirvaWave is orders of magnitude lower than its EM software counterparts that directly solve Maxwell Equations. Hence, NirvaWave enables a user-friendly interface for large-scale channel simulations required for developing new model-driven and data-driven techniques. We evaluated the performance of NirvaWave through direct comparison with EM simulation software. Finally, we have open-sourced the core codebase of NirvaWave in our GitHub repository (https://github.com/vahidyazdnian1378/NirvaWave).
Abstract:THz communications are expected to play a profound role in future wireless systems. The current trend of the extremely massive multiple-input multiple-output (MIMO) antenna architectures tends to be costly and power inefficient when implementing wideband THz communications. An emerging THz antenna technology is leaky wave antenna (LWA), which can realize frequency selective beamforming with a single radiating element. In this work, we explore the usage of LWAs technology for wideband multi-user THz communications. We propose a model for the LWA signal processing that is physically compliant facilitating studying LWA-aided communication systems. Focusing on downlink systems, we propose an alternating optimization algorithm for jointly optimizing the LWA configuration along with the signal spectral power allocation to maximize the sum-rate performance. Our numerical results show that a single LWA can generate diverse beampatterns at THz, exhibiting performance comparable to costly fully digital MIMO arrays.