Abstract:Structure-Based Drug Design (SBDD) aims to discover bioactive ligands. Conventional approaches construct probability paths separately in Euclidean and probabilistic spaces for continuous atomic coordinates and discrete chemical categories, leading to a mismatch with the underlying statistical manifolds. We address this issue from an information-geometric perspective by modeling molecules as composite exponential-family distributions and defining generative flows along exponential geodesics under the Fisher-Rao metric. To avoid the instantaneous trajectory collapse induced by geodesics directly targeting Dirac distributions, we propose Evolving Exponential Geodesic Flow for SBDD (EvoEGF-Mol), which replaces static Dirac targets with dynamically concentrating distributions, ensuring stable training via a progressive-parameter-refinement architecture. Our model approaches a reference-level PoseBusters passing rate (93.4%) on CrossDock, demonstrating remarkable geometric precision and interaction fidelity, while outperforming baselines on real-world MolGenBench tasks by recovering bioactive scaffolds and generating candidates that meet established MedChem filters.
Abstract:Biological processes, functions, and properties are intricately linked to the ensemble of protein conformations, rather than being solely determined by a single stable conformation. In this study, we have developed P2DFlow, a generative model based on SE(3) flow matching, to predict the structural ensembles of proteins. We specifically designed a valuable prior for the flow process and enhanced the model's ability to distinguish each intermediate state by incorporating an additional dimension to describe the ensemble data, which can reflect the physical laws governing the distribution of ensembles, so that the prior knowledge can effectively guide the generation process. When trained and evaluated on the MD datasets of ATLAS, P2DFlow outperforms other baseline models on extensive experiments, successfully capturing the observable dynamic fluctuations as evidenced in crystal structure and MD simulations. As a potential proxy agent for protein molecular simulation, the high-quality ensembles generated by P2DFlow could significantly aid in understanding protein functions across various scenarios. Code is available at https://github.com/BLEACH366/P2DFlow.