Abstract:We introduce the Transformed Generative Pre-Trained Physics-Informed Neural Networks (TGPT-PINN) for accomplishing nonlinear model order reduction (MOR) of transport-dominated partial differential equations in an MOR-integrating PINNs framework. Building on the recent development of the GPT-PINN that is a network-of-networks design achieving snapshot-based model reduction, we design and test a novel paradigm for nonlinear model reduction that can effectively tackle problems with parameter-dependent discontinuities. Through incorporation of a shock-capturing loss function component as well as a parameter-dependent transform layer, the TGPT-PINN overcomes the limitations of linear model reduction in the transport-dominated regime. We demonstrate this new capability for nonlinear model reduction in the PINNs framework by several nontrivial parametric partial differential equations.
Abstract:Physics-Informed Neural Network (PINN) has proven itself a powerful tool to obtain the numerical solutions of nonlinear partial differential equations (PDEs) leveraging the expressivity of deep neural networks and the computing power of modern heterogeneous hardware. However, its training is still time-consuming, especially in the multi-query and real-time simulation settings, and its parameterization often overly excessive. In this paper, we propose the Generative Pre-Trained PINN (GPT-PINN) to mitigate both challenges in the setting of parametric PDEs. GPT-PINN represents a brand-new meta-learning paradigm for parametric systems. As a network of networks, its outer-/meta-network is hyper-reduced with only one hidden layer having significantly reduced number of neurons. Moreover, its activation function at each hidden neuron is a (full) PINN pre-trained at a judiciously selected system configuration. The meta-network adaptively ``learns'' the parametric dependence of the system and ``grows'' this hidden layer one neuron at a time. In the end, by encompassing a very small number of networks trained at this set of adaptively-selected parameter values, the meta-network is capable of generating surrogate solutions for the parametric system across the entire parameter domain accurately and efficiently.
Abstract:Repeatedly solving the parameterized optimal mass transport (pOMT) problem is a frequent task in applications such as image registration and adaptive grid generation. It is thus critical to develop a highly efficient reduced solver that is equally accurate as the full order model. In this paper, we propose such a machine learning-like method for pOMT by adapting a new reduced basis (RB) technique specifically designed for nonlinear equations, the reduced residual reduced over-collocation (R2-ROC) approach, to the parameterized Monge-Amp$\grave{\rm e}$re equation. It builds on top of a narrow-stencil finite different method (FDM), a so-called truth solver, which we propose in this paper for the Monge-Amp$\grave{\rm e}$re equation with a transport boundary. Together with the R2-ROC approach, it allows us to handle the strong and unique nonlinearity pertaining to the Monge-Amp$\grave{\rm e}$re equation achieving online efficiency without resorting to any direct approximation of the nonlinearity. Several challenging numerical tests demonstrate the accuracy and high efficiency of our method for solving the Monge-Amp$\grave{\rm e}$re equation with various parametric boundary conditions.
Abstract:Dimension reduction is often needed in the area of data mining. The goal of these methods is to map the given high-dimensional data into a low-dimensional space preserving certain properties of the initial data. There are two kinds of techniques for this purpose. The first, projective methods, builds an explicit linear projection from the high-dimensional space to the low-dimensional one. On the other hand, the nonlinear methods utilizes nonlinear and implicit mapping between the two spaces. In both cases, the methods considered in literature have usually relied on computationally very intensive matrix factorizations, frequently the Singular Value Decomposition (SVD). The computational burden of SVD quickly renders these dimension reduction methods infeasible thanks to the ever-increasing sizes of the practical datasets. In this paper, we present a new decomposition strategy, Reduced Basis Decomposition (RBD), which is inspired by the Reduced Basis Method (RBM). Given $X$ the high-dimensional data, the method approximates it by $Y \, T (\approx X)$ with $Y$ being the low-dimensional surrogate and $T$ the transformation matrix. $Y$ is obtained through a greedy algorithm thus extremely efficient. In fact, it is significantly faster than SVD with comparable accuracy. $T$ can be computed on the fly. Moreover, unlike many compression algorithms, it easily finds the mapping for an arbitrary ``out-of-sample'' vector and it comes with an ``error indicator'' certifying the accuracy of the compression. Numerical results are shown validating these claims.