Abstract:Complex motion patterns of natural systems, such as fish schools, bird flocks, and cell groups, have attracted great attention from scientists for years. Trajectory measurement of individuals is vital for quantitative and high-throughput study of their collective behaviors. However, such data are rare mainly due to the challenges of detection and tracking of large numbers of objects with similar visual features and frequent occlusions. We present an automatic and effective framework to measure trajectories of large numbers of crowded oval-shaped objects, such as fish and cells. We first use a novel dual ellipse locator to detect the coarse position of each individual and then propose a variance minimization active contour method to obtain the optimal segmentation results. For tracking, cost matrix of assignment between consecutive frames is trainable via a random forest classifier with many spatial, texture, and shape features. The optimal trajectories are found for the whole image sequence by solving two linear assignment problems. We evaluate the proposed method on many challenging data sets.
Abstract:We present a Temporal Context Network (TCN) for precise temporal localization of human activities. Similar to the Faster-RCNN architecture, proposals are placed at equal intervals in a video which span multiple temporal scales. We propose a novel representation for ranking these proposals. Since pooling features only inside a segment is not sufficient to predict activity boundaries, we construct a representation which explicitly captures context around a proposal for ranking it. For each temporal segment inside a proposal, features are uniformly sampled at a pair of scales and are input to a temporal convolutional neural network for classification. After ranking proposals, non-maximum suppression is applied and classification is performed to obtain final detections. TCN outperforms state-of-the-art methods on the ActivityNet dataset and the THUMOS14 dataset.