Abstract:We propose E-MD3C ($\underline{E}$fficient $\underline{M}$asked $\underline{D}$iffusion Transformer with Disentangled $\underline{C}$onditions and $\underline{C}$ompact $\underline{C}$ollector), a highly efficient framework for zero-shot object image customization. Unlike prior works reliant on resource-intensive Unet architectures, our approach employs lightweight masked diffusion transformers operating on latent patches, offering significantly improved computational efficiency. The framework integrates three core components: (1) an efficient masked diffusion transformer for processing autoencoder latents, (2) a disentangled condition design that ensures compactness while preserving background alignment and fine details, and (3) a learnable Conditions Collector that consolidates multiple inputs into a compact representation for efficient denoising and learning. E-MD3C outperforms the existing approach on the VITON-HD dataset across metrics such as PSNR, FID, SSIM, and LPIPS, demonstrating clear advantages in parameters, memory efficiency, and inference speed. With only $\frac{1}{4}$ of the parameters, our Transformer-based 468M model delivers $2.5\times$ faster inference and uses $\frac{2}{3}$ of the GPU memory compared to an 1720M Unet-based latent diffusion model.
Abstract:In recent years, large language models have had a very impressive performance, which largely contributed to the development and application of artificial intelligence, and the parameters and performance of the models are still growing rapidly. In particular, multimodal large language models (MLLM) can combine multiple modalities such as pictures, videos, sounds, texts, etc., and have great potential in various tasks. However, most MLLMs require very high computational resources, which is a major challenge for most researchers and developers. In this paper, we explored the utility of small-scale MLLMs and applied small-scale MLLMs to the field of autonomous driving. We hope that this will advance the application of MLLMs in real-world scenarios.