Abstract:Peak sidelobe level reduction (PSLR) is crucial in the application of large-scale array antenna, which directly determines the radiation performance of array antenna. We study the PSLR of subarray level aperiodic arrays and propose three array structures: dislocated subarrays with uniform elements (DSUE), uniform subarrays with random elements (USRE), dislocated subarrays with random elements (DSRE). To optimize the dislocation position of subarrays and random position of elements, the improved Bat algorithm (IBA) is applied. To draw the comparison of PSLR effect among these three array structures, we take three size of array antennas from small to large as examples to simulate and calculate the redundancy and peak sidelobe level (PSLL) of them. The results show that DSRE is the optimal array structure by analyzing the dislocation distance of subarray, scanning angle and applicable frequency. The proposed design method is a universal and scalable method, which is of great application value to the design of large-scale aperiodic array antenna.
Abstract:Underwater robots play an important role in oceanic geological exploration, resource exploitation, ecological research, and other fields. However, the visual perception of underwater robots is affected by various environmental factors. The main challenge now is that images captured by underwater robots are color-distorted. The hue of underwater images tends to be close to green and blue. In addition, the contrast is low and the details are fuzzy. In this paper, a new underwater image enhancement algorithm based on deep learning and image formation model is proposed. Experimental results show that the advantages of the proposed method are that it eliminates the influence of underwater environmental factors, enriches the color, enhances details, achieves higher scores in PSNR and SSIM metrics, and helps feature key-point point matching get better results. Another significant advantage is that its computation speed is much faster than other methods.