Abstract:Reinforcement learning-based mapless navigation holds significant potential. However, it faces challenges in indoor environments with local minima area. This paper introduces a safe mapless navigation framework utilizing hierarchical reinforcement learning (HRL) to enhance navigation through such areas. The high-level policy creates a sub-goal to direct the navigation process. Notably, we have developed a sub-goal update mechanism that considers environment congestion, efficiently avoiding the entrapment of the robot in local minimum areas. The low-level motion planning policy, trained through safe reinforcement learning, outputs real-time control instructions based on acquired sub-goal. Specifically, to enhance the robot's environmental perception, we introduce a new obstacle encoding method that evaluates the impact of obstacles on the robot's motion planning. To validate the performance of our HRL-based navigation framework, we conduct simulations in office, home, and restaurant environments. The findings demonstrate that our HRL-based navigation framework excels in both static and dynamic scenarios. Finally, we implement the HRL-based navigation framework on a TurtleBot3 robot for physical validation experiments, which exhibits its strong generalization capabilities.
Abstract:Multi-agent target assignment and path planning (TAPF) are two key problems in intelligent warehouse. However, most literature only addresses one of these two problems separately. In this study, we propose a method to simultaneously solve target assignment and path planning from a perspective of cooperative multi-agent deep reinforcement learning (RL). To the best of our knowledge, this is the first work to model the TAPF problem for intelligent warehouse to cooperative multi-agent deep RL, and the first to simultaneously address TAPF based on multi-agent deep RL. Furthermore, previous literature rarely considers the physical dynamics of agents. In this study, the physical dynamics of the agents is considered. Experimental results show that our method performs well in various task settings, which means that the target assignment is solved reasonably well and the planned path is almost shortest. Moreover, our method is more time-efficient than baselines.