Abstract:In this paper, we introduce two types of novel Asymptotic-Preserving Convolutional Deep Operator Networks (APCONs) designed to address the multiscale time-dependent linear transport problem. We observe that the vanilla physics-informed DeepONets with modified MLP may exhibit instability in maintaining the desired limiting macroscopic behavior. Therefore, this necessitates the utilization of an asymptotic-preserving loss function. Drawing inspiration from the heat kernel in the diffusion equation, we propose a new architecture called Convolutional Deep Operator Networks, which employ multiple local convolution operations instead of a global heat kernel, along with pooling and activation operations in each filter layer. Our APCON methods possess a parameter count that is independent of the grid size and are capable of capturing the diffusive behavior of the linear transport problem. Finally, we validate the effectiveness of our methods through several numerical examples.
Abstract:Fractional diffusion equations have been an effective tool for modeling anomalous diffusion in complicated systems. However, traditional numerical methods require expensive computation cost and storage resources because of the memory effect brought by the convolution integral of time fractional derivative. We propose a Bayesian Inversion with Neural Operator (BINO) to overcome the difficulty in traditional methods as follows. We employ a deep operator network to learn the solution operators for the fractional diffusion equations, allowing us to swiftly and precisely solve a forward problem for given inputs (including fractional order, diffusion coefficient, source terms, etc.). In addition, we integrate the deep operator network with a Bayesian inversion method for modelling a problem by subdiffusion process and solving inverse subdiffusion problems, which reduces the time costs (without suffering from overwhelm storage resources) significantly. A large number of numerical experiments demonstrate that the operator learning method proposed in this work can efficiently solve the forward problems and Bayesian inverse problems of the subdiffusion equation.