Abstract:The generation and editing of floor plans are critical in architectural planning, requiring a high degree of flexibility and efficiency. Existing methods demand extensive input information and lack the capability for interactive adaptation to user modifications. This paper introduces ChatHouseDiffusion, which leverages large language models (LLMs) to interpret natural language input, employs graphormer to encode topological relationships, and uses diffusion models to flexibly generate and edit floor plans. This approach allows iterative design adjustments based on user ideas, significantly enhancing design efficiency. Compared to existing models, ChatHouseDiffusion achieves higher Intersection over Union (IoU) scores, permitting precise, localized adjustments without the need for complete redesigns, thus offering greater practicality. Experiments demonstrate that our model not only strictly adheres to user specifications but also facilitates a more intuitive design process through its interactive capabilities.
Abstract:There are numerous advantages of deep neural network surrogate modeling for response time-history prediction. However, due to the high cost of refined numerical simulations and actual experiments, the lack of data has become an unavoidable bottleneck in practical applications. An iterative self-transfer learningmethod for training neural networks based on small datasets is proposed in this study. A new mapping-based transfer learning network, named as deep adaptation network with three branches for regression (DAN-TR), is proposed. A general iterative network training strategy is developed by coupling DAN-TR and the pseudo-label strategy, and the establishment of corresponding datasets is also discussed. Finally, a complex component is selected as a case study. The results show that the proposed method can improve the model performance by near an order of magnitude on small datasets without the need of external labeled samples,well behaved pre-trainedmodels, additional artificial labeling, and complex physical/mathematical analysis.