Abstract:Exploring the application of deep learning technologies in the field of medical diagnostics, Magnetic Resonance Imaging (MRI) provides a unique perspective for observing and diagnosing complex neurodegenerative diseases such as Alzheimer Disease (AD). With advancements in deep learning, particularly in Convolutional Neural Networks (CNNs) and the Xception network architecture, we are now able to analyze and classify vast amounts of MRI data with unprecedented accuracy. The progress of this technology not only enhances our understanding of brain structural changes but also opens up new avenues for monitoring disease progression through non-invasive means and potentially allows for precise diagnosis in the early stages of the disease. This study aims to classify MRI images using deep learning models to identify different stages of Alzheimer Disease through a series of innovative data processing and model construction steps. Our experimental results show that the deep learning framework based on the Xception model achieved a 99.6% accuracy rate in the multi-class MRI image classification task, demonstrating its potential application value in assistive diagnosis. Future research will focus on expanding the dataset, improving model interpretability, and clinical validation to further promote the application of deep learning technology in the medical field, with the hope of bringing earlier diagnosis and more personalized treatment plans to Alzheimer Disease patients.
Abstract:Mobile Internet user credit assessment is an important way for communication operators to establish decisions and formulate measures, and it is also a guarantee for operators to obtain expected benefits. However, credit evaluation methods have long been monopolized by financial industries such as banks and credit. As supporters and providers of platform network technology and network resources, communication operators are also builders and maintainers of communication networks. Internet data improves the user's credit evaluation strategy. This paper uses the massive data provided by communication operators to carry out research on the operator's user credit evaluation model based on the fusion LightGBM algorithm. First, for the massive data related to user evaluation provided by operators, key features are extracted by data preprocessing and feature engineering methods, and a multi-dimensional feature set with statistical significance is constructed; then, linear regression, decision tree, LightGBM, and other machine learning algorithms build multiple basic models to find the best basic model; finally, integrates Averaging, Voting, Blending, Stacking and other integrated algorithms to refine multiple fusion models, and finally establish the most suitable fusion model for operator user evaluation.
Abstract:Transmission line detection technology is crucial for automatic monitoring and ensuring the safety of electrical facilities. The YOLOv5 series is currently one of the most advanced and widely used methods for object detection. However, it faces inherent challenges, such as high computational load on devices and insufficient detection accuracy. To address these concerns, this paper presents an enhanced lightweight YOLOv5 technique customized for mobile devices, specifically intended for identifying objects associated with transmission lines. The C3Ghost module is integrated into the convolutional network of YOLOv5 to reduce floating point operations per second (FLOPs) in the feature channel fusion process and improve feature expression performance. In addition, a FasterNet module is introduced to replace the c3 module in the YOLOv5 Backbone. The FasterNet module uses Partial Convolutions to process only a portion of the input channels, improving feature extraction efficiency and reducing computational overhead. To address the imbalance between simple and challenging samples in the dataset and the diversity of aspect ratios of bounding boxes, the wIoU v3 LOSS is adopted as the loss function. To validate the performance of the proposed approach, Experiments are conducted on a custom dataset of transmission line poles. The results show that the proposed model achieves a 1% increase in detection accuracy, a 13% reduction in FLOPs, and a 26% decrease in model parameters compared to the existing YOLOv5.In the ablation experiment, it was also discovered that while the Fastnet module and the CSghost module improved the precision of the original YOLOv5 baseline model, they caused a decrease in the mAP@.5-.95 metric. However, the improvement of the wIoUv3 loss function significantly mitigated the decline of the mAP@.5-.95 metric.