Abstract:Efficient traffic signal control is critical for reducing traffic congestion and improving overall transportation efficiency. The dynamic nature of traffic flow has prompted researchers to explore Reinforcement Learning (RL) for traffic signal control (TSC). Compared with traditional methods, RL-based solutions have shown preferable performance. However, the application of RL-based traffic signal controllers in the real world is limited by the low sample efficiency and high computational requirements of these solutions. In this work, we propose DTLight, a simple yet powerful lightweight Decision Transformer-based TSC method that can learn policy from easily accessible offline datasets. DTLight novelly leverages knowledge distillation to learn a lightweight controller from a well-trained larger teacher model to reduce implementation computation. Additionally, it integrates adapter modules to mitigate the expenses associated with fine-tuning, which makes DTLight practical for online adaptation with minimal computation and only a few fine-tuning steps during real deployment. Moreover, DTLight is further enhanced to be more applicable to real-world TSC problems. Extensive experiments on synthetic and real-world scenarios show that DTLight pre-trained purely on offline datasets can outperform state-of-the-art online RL-based methods in most scenarios. Experiment results also show that online fine-tuning further improves the performance of DTLight by up to 42.6% over the best online RL baseline methods. In this work, we also introduce Datasets specifically designed for TSC with offline RL (referred to as DTRL). Our datasets and code are publicly available.
Abstract:Traffic signal control is of critical importance for the effective use of transportation infrastructures. The rapid increase of vehicle traffic and changes in traffic patterns make traffic signal control more and more challenging. Reinforcement Learning (RL)-based algorithms have demonstrated their potential in dealing with traffic signal control. However, most existing solutions require a large amount of training data, which is unacceptable for many real-world scenarios. This paper proposes a novel model-based meta-reinforcement learning framework (ModelLight) for traffic signal control. Within ModelLight, an ensemble of models for road intersections and the optimization-based meta-learning method are used to improve the data efficiency of an RL-based traffic light control method. Experiments on real-world datasets demonstrate that ModelLight can outperform state-of-the-art traffic light control algorithms while substantially reducing the number of required interactions with the real-world environment.