Abstract:In the evolution towards 6G, integrating Artificial Intelligence (AI) with advanced network infrastructure emerges as a pivotal strategy for enhancing network intelligence and resource utilization. Existing distributed learning frameworks like Federated Learning and Split Learning often struggle with significant challenges in dynamic network environments including high synchronization demands, costly communication overheads, severe computing resource consumption, and data heterogeneity across network nodes. These obstacles hinder the applications of ubiquitous computing capabilities of 6G networks, especially in light of the trend of escalating model parameters and training data volumes. To address these challenges effectively, this paper introduces "Snake Learning", a cost-effective distributed learning framework. Specifically, Snake Learning respects the heterogeneity of inter-node computing capability and local data distribution in 6G networks, and sequentially trains the designated part of model layers on individual nodes. This layer-by-layer serpentine update mechanism contributes to significantly reducing the requirements for storage, memory and communication during the model training phase, and demonstrates superior adaptability and efficiency for both Computer Vision (CV) training and Large Language Model (LLM) fine-tuning tasks across homogeneous and heterogeneous data distributions.
Abstract:The rapid development of artificial intelligence (AI) over massive applications including Internet-of-things on cellular network raises the concern of technical challenges such as privacy, heterogeneity and resource efficiency. Federated learning is an effective way to enable AI over massive distributed nodes with security. However, conventional works mostly focus on learning a single global model for a unique task across the network, and are generally less competent to handle multi-task learning (MTL) scenarios with stragglers at the expense of acceptable computation and communication cost. Meanwhile, it is challenging to ensure the privacy while maintain a coupled multi-task learning across multiple base stations (BSs) and terminals. In this paper, inspired by the natural cloud-BS-terminal hierarchy of cellular works, we provide a viable resource-aware hierarchical federated MTL (RHFedMTL) solution to meet the heterogeneity of tasks, by solving different tasks within the BSs and aggregating the multi-task result in the cloud without compromising the privacy. Specifically, a primal-dual method has been leveraged to effectively transform the coupled MTL into some local optimization sub-problems within BSs. Furthermore, compared with existing methods to reduce resource cost by simply changing the aggregation frequency, we dive into the intricate relationship between resource consumption and learning accuracy, and develop a resource-aware learning strategy for local terminals and BSs to meet the resource budget. Extensive simulation results demonstrate the effectiveness and superiority of RHFedMTL in terms of improving the learning accuracy and boosting the convergence rate.