Abstract:Magnetic resonance imaging (MRI) is a valuable clinical tool for displaying anatomical structures and aiding in accurate diagnosis. Medical image super-resolution (SR) reconstruction using deep learning techniques can enhance lesion analysis and assist doctors in improving diagnostic efficiency and accuracy. However, existing deep learning-based SR methods predominantly rely on convolutional neural networks (CNNs), which inherently limit the expressive capabilities of these models and therefore make it challenging to discover potential relationships between different image features. To overcome this limitation, we propose an A-network that utilizes multiple convolution operator feature extraction modules (MCO) for extracting image features using multiple convolution operators. These extracted features are passed through multiple sets of cross-feature extraction modules (MSC) to highlight key features through inter-channel feature interactions, enabling subsequent feature learning. An attention-based sparse graph neural network module is incorporated to establish relationships between pixel features, learning which adjacent pixels have the greatest impact on determining the features to be filled. To evaluate our model's effectiveness, we conducted experiments using different models on data generated from multiple datasets with different degradation multiples, and the experimental results show that our method is a significant improvement over the current state-of-the-art methods.
Abstract:Cochlear implantation is currently the most effective treatment for patients with severe deafness, but mastering cochlear implantation is extremely challenging because the temporal bone has extremely complex and small three-dimensional anatomical structures, and it is important to avoid damaging the corresponding structures when performing surgery. The spatial location of the relevant anatomical tissues within the target area needs to be determined using CT prior to the procedure. Considering that the target structures are too small and complex, the time required for manual segmentation is too long, and it is extremely challenging to segment the temporal bone and its nearby anatomical structures quickly and accurately. To overcome this difficulty, we propose a deep learning-based algorithm, a 3D network model for automatic segmentation of multi-structural targets in temporal bone CT that can automatically segment the cochlea, facial nerve, auditory tubercle, vestibule and semicircular canal. The algorithm combines CNN and Transformer for feature extraction and takes advantage of spatial attention and channel attention mechanisms to further improve the segmentation effect, the experimental results comparing with the results of various existing segmentation algorithms show that the dice similarity scores, Jaccard coefficients of all targets anatomical structures are significantly higher while HD95 and ASSD scores are lower, effectively proving that our method outperforms other advanced methods.