Abstract:Large language models such as ChatGPT are increasingly explored in medical domains. However, the absence of standard guidelines for performance evaluation has led to methodological inconsistencies. This study aims to summarize the available evidence on evaluating ChatGPT's performance in medicine and provide direction for future research. We searched ten medical literature databases on June 15, 2023, using the keyword "ChatGPT". A total of 3520 articles were identified, of which 60 were reviewed and summarized in this paper and 17 were included in the meta-analysis. The analysis showed that ChatGPT displayed an overall integrated accuracy of 56% (95% CI: 51%-60%, I2 = 87%) in addressing medical queries. However, the studies varied in question resource, question-asking process, and evaluation metrics. Moreover, many studies failed to report methodological details, including the version of ChatGPT and whether each question was used independently or repeatedly. Our findings revealed that although ChatGPT demonstrated considerable potential for application in healthcare, the heterogeneity of the studies and insufficient reporting may affect the reliability of these results. Further well-designed studies with comprehensive and transparent reporting are needed to evaluate ChatGPT's performance in medicine.
Abstract:Outbreaks of hand-foot-and-mouth disease(HFMD) have been associated with significant morbidity and, in severe cases, mortality. Accurate forecasting of daily admissions of pediatric HFMD patients is therefore crucial for aiding the hospital in preparing for potential outbreaks and mitigating nosocomial transmissions. To address this pressing need, we propose a novel transformer-based model with a U-net shape, utilizing the patching strategy and the joint prediction strategy that capitalizes on insights from herpangina, a disease closely correlated with HFMD. This model also integrates representation learning by introducing reconstruction loss as an auxiliary loss. The results show that our U-net Patching Time Series Transformer (UPTST) model outperforms existing approaches in both long- and short-arm prediction accuracy of HFMD at hospital-level. Furthermore, the exploratory extension experiments show that the model's capabilities extend beyond prediction of infectious disease, suggesting broader applicability in various domains.