Abstract:In this paper, we consider the minimization of a nonsmooth nonconvex objective function $f(x)$ over a closed convex subset $\mathcal{X}$ of $\mathbb{R}^n$, with additional nonsmooth nonconvex constraints $c(x) = 0$. We develop a unified framework for developing Lagrangian-based methods, which takes a single-step update to the primal variables by some subgradient methods in each iteration. These subgradient methods are ``embedded'' into our framework, in the sense that they are incorporated as black-box updates to the primal variables. We prove that our proposed framework inherits the global convergence guarantees from these embedded subgradient methods under mild conditions. In addition, we show that our framework can be extended to solve constrained optimization problems with expectation constraints. Based on the proposed framework, we show that a wide range of existing stochastic subgradient methods, including the proximal SGD, proximal momentum SGD, and proximal ADAM, can be embedded into Lagrangian-based methods. Preliminary numerical experiments on deep learning tasks illustrate that our proposed framework yields efficient variants of Lagrangian-based methods with convergence guarantees for nonconvex nonsmooth constrained optimization problems.
Abstract:In this paper, we investigate the convergence properties of the stochastic gradient descent (SGD) method and its variants, especially in training neural networks built from nonsmooth activation functions. We develop a novel framework that assigns different timescales to stepsizes for updating the momentum terms and variables, respectively. Under mild conditions, we prove the global convergence of our proposed framework in both single-timescale and two-timescale cases. We show that our proposed framework encompasses a wide range of well-known SGD-type methods, including heavy-ball SGD, SignSGD, Lion, normalized SGD and clipped SGD. Furthermore, when the objective function adopts a finite-sum formulation, we prove the convergence properties for these SGD-type methods based on our proposed framework. In particular, we prove that these SGD-type methods find the Clarke stationary points of the objective function with randomly chosen stepsizes and initial points under mild assumptions. Preliminary numerical experiments demonstrate the high efficiency of our analyzed SGD-type methods.
Abstract:In this paper, we present a comprehensive study on the convergence properties of Adam-family methods for nonsmooth optimization, especially in the training of nonsmooth neural networks. We introduce a novel two-timescale framework that adopts a two-timescale updating scheme, and prove its convergence properties under mild assumptions. Our proposed framework encompasses various popular Adam-family methods, providing convergence guarantees for these methods in training nonsmooth neural networks. Furthermore, we develop stochastic subgradient methods that incorporate gradient clipping techniques for training nonsmooth neural networks with heavy-tailed noise. Through our framework, we show that our proposed methods converge even when the evaluation noises are only assumed to be integrable. Extensive numerical experiments demonstrate the high efficiency and robustness of our proposed methods.