Abstract:Canonical correlation analysis was proposed by Hotelling [6] and it measures linear relationship between two multidimensional variables. In high dimensional setting, the classical canonical correlation analysis breaks down. We propose a sparse canonical correlation analysis by adding l1 constraints on the canonical vectors and show how to solve it efficiently using linearized alternating direction method of multipliers (ADMM) and using TFOCS as a black box. We illustrate this idea on simulated data.
Abstract:We consider regression scenarios where it is natural to impose an order constraint on the coefficients. We propose an order-constrained version of L1-regularized regression for this problem, and show how to solve it efficiently using the well-known Pool Adjacent Violators Algorithm as its proximal operator. The main application of this idea is time-lagged regression, where we predict an outcome at time t from features at the previous K time points. In this setting it is natural to assume that the coefficients decay as we move farther away from t, and hence the order constraint is reasonable. Potential applications include financial time series and prediction of dynamic patient out- comes based on clinical measurements. We illustrate this idea on real and simulated data.