Abstract:Deep Metric Learning (DML) has shown remarkable successes in many domains by taking advantage of powerful deep neural networks. Deep neural networks are prone to adversarial attacks and could be easily fooled by adversarial examples. The current progress on this robustness issue is mainly about deep classification models but pays little attention to DML models. Existing works fail to thoroughly inspect the robustness of DML and neglect an important DML scenario, the clustering-based inference. In this work, we first point out the robustness issue of DML models in clustering-based inference scenarios. We find that, for the clustering-based inference, existing defenses designed DML are unable to be reused and the adaptions of defenses designed for deep classification models cannot achieve satisfactory robustness performance. To alleviate the hazard of adversarial examples, we propose a new defense, the Ensemble Adversarial Training (EAT), which exploits ensemble learning and adversarial training. EAT promotes the diversity of the ensemble, encouraging each model in the ensemble to have different robustness features, and employs a self-transferring mechanism to make full use of the robustness statistics of the whole ensemble in the update of every single model. We evaluate the EAT method on three widely-used datasets with two popular model architectures. The results show that the proposed EAT method greatly outperforms the adaptions of defenses designed for deep classification models.
Abstract:Federated Learning (FL) allows users to share knowledge instead of raw data to train a model with high accuracy. Unfortunately, during the training, users lose control over the knowledge shared, which causes serious data privacy issues. We hold that users are only willing and need to share the essential knowledge to the training task to obtain the FL model with high accuracy. However, existing efforts cannot help users minimize the shared knowledge according to the user intention in the FL training procedure. This work proposes FLiP, which aims to bring the principle of least privilege (PoLP) to FL training. The key design of FLiP is applying elaborate information reduction on the training data through a local-global dataset distillation design. We measure the privacy performance through attribute inference and membership inference attacks. Extensive experiments show that FLiP strikes a good balance between model accuracy and privacy protection.