Abstract:Scoliosis is one of the most common diseases in adolescents. Traditional screening methods for the scoliosis usually use radiographic examination, which requires certified experts with medical instruments and brings the radiation risk. Considering such requirement and inconvenience, we propose to use natural images of the human back for wide-range scoliosis screening, which is a challenging problem. In this paper, we notice that the human back has a certain degree of symmetry, and asymmetrical human backs are usually caused by spinal lesions. Besides, scoliosis severity levels have ordinal relationships. Taking inspiration from this, we propose a dual-path scoliosis detection network with two main modules: symmetric feature matching module (SFMM) and ordinal regression head (ORH). Specifically, we first adopt a backbone to extract features from both the input image and its horizontally flipped image. Then, we feed the two extracted features into the SFMM to capture symmetric relationships. Finally, we use the ORH to transform the ordinal regression problem into a series of binary classification sub-problems. Extensive experiments demonstrate that our approach outperforms state-of-the-art methods as well as human performance, which provides a promising and economic solution to wide-range scoliosis screening. In particular, our method achieves accuracies of 95.11% and 81.46% in estimation of general severity level and fine-grained severity level of the scoliosis, respectively.
Abstract:Automatic Cobb angle measurement from X-ray images is crucial for scoliosis screening and diagnosis. However, most existing regression-based methods and segmentation-based methods struggle with inaccurate spine representations or mask connectivity/fragmentation issues. Besides, landmark-based methods suffer from insufficient training data and annotations. To address these challenges, we propose a novel framework including Self-Generation pipeline and Low-Rank Approximation representation (SG-LRA) for automatic Cobb angle measurement. Specifically, we propose a parameterized spine contour representation based on LRA, which enables eigen-spine decomposition and spine contour reconstruction. We can directly obtain spine contour with only regressed LRA coefficients, which form a more accurate spine representation than rectangular boxes. Also, we combine LRA coefficient regression with anchor box classification to solve inaccurate predictions and mask connectivity issues. Moreover, we develop a data engine with automatic annotation and automatic selection in an iterative manner, which is trained on a private Spinal2023 dataset. With our data engine, we generate the largest scoliosis X-ray dataset named Spinal-AI2024 largely without privacy leaks. Extensive experiments on public AASCE2019, private Spinal2023, and generated Spinal-AI2024 datasets demonstrate that our method achieves state-of-the-art Cobb angle measurement performance. Our code and Spinal-AI2024 dataset are available at https://github.com/Ernestchenchen/SG-LRA and https://github.com/Ernestchenchen/Spinal-AI2024, respectively.