Abstract:Offline reinforcement learning (RL) seeks to derive an effective control policy from previously collected data. To circumvent errors due to inadequate data coverage, behavior-regularized methods optimize the control policy while concurrently minimizing deviation from the data collection policy. Nevertheless, these methods often exhibit subpar practical performance, particularly when the offline dataset is collected by sub-optimal policies. In this paper, we propose a novel algorithm employing in-sample policy iteration that substantially enhances behavior-regularized methods in offline RL. The core insight is that by continuously refining the policy used for behavior regularization, in-sample policy iteration gradually improves itself while implicitly avoids querying out-of-sample actions to avert catastrophic learning failures. Our theoretical analysis verifies its ability to learn the in-sample optimal policy, exclusively utilizing actions well-covered by the dataset. Moreover, we propose competitive policy improvement, a technique applying two competitive policies, both of which are trained by iteratively improving over the best competitor. We show that this simple yet potent technique significantly enhances learning efficiency when function approximation is applied. Lastly, experimental results on the D4RL benchmark indicate that our algorithm outperforms previous state-of-the-art methods in most tasks.