Abstract:Recent years have witnessed the prosperity of reference-based image super-resolution (Ref-SR). By importing the high-resolution (HR) reference images into the single image super-resolution (SISR) approach, the ill-posed nature of this long-standing field has been alleviated with the assistance of texture transferred from reference images. Although the significant improvement in quantitative and qualitative results has verified the superiority of Ref-SR methods, the presence of misalignment before texture transfer indicates room for further performance improvement. Existing methods tend to neglect the significance of details in the context of comparison, therefore not fully leveraging the information contained within low-resolution (LR) images. In this paper, we propose a Detail-Enhancing Framework (DEF) for reference-based super-resolution, which introduces the diffusion model to generate and enhance the underlying detail in LR images. If corresponding parts are present in the reference image, our method can facilitate rigorous alignment. In cases where the reference image lacks corresponding parts, it ensures a fundamental improvement while avoiding the influence of the reference image. Extensive experiments demonstrate that our proposed method achieves superior visual results while maintaining comparable numerical outcomes.
Abstract:In time series forecasting, effectively disentangling intricate temporal patterns is crucial. While recent works endeavor to combine decomposition techniques with deep learning, multiple frequencies may still be mixed in the decomposed components, e.g., trend and seasonal. Furthermore, frequency domain analysis methods, e.g., Fourier and wavelet transforms, have limitations in resolution in the time domain and adaptability. In this paper, we propose D-PAD, a deep-shallow multi-frequency patterns disentangling neural network for time series forecasting. Specifically, a multi-component decomposing (MCD) block is introduced to decompose the series into components with different frequency ranges, corresponding to the "shallow" aspect. A decomposition-reconstruction-decomposition (D-R-D) module is proposed to progressively extract the information of frequencies mixed in the components, corresponding to the "deep" aspect. After that, an interaction and fusion (IF) module is used to further analyze the components. Extensive experiments on seven real-world datasets demonstrate that D-PAD achieves the state-of-the-art performance, outperforming the best baseline by an average of 9.48% and 7.15% in MSE and MAE, respectively.