Abstract:Aerial Manipulators (AMs) provide a versatile platform for various applications, including 3D printing, architecture, and aerial grasping missions. However, their operational speed is often sacrificed to uphold precision. Existing control strategies for AMs often regard the manipulator as a disturbance and employ robust control methods to mitigate its influence. This research focuses on elevating the precision of the end-effector and enhancing the agility of aerial manipulator movements. We present a composite control scheme to address these challenges. Initially, a Nonlinear Disturbance Observer (NDOB) is utilized to compensate for internal coupling effects and external disturbances. Subsequently, manipulator dynamics are processed through a high pass filter to facilitate agile movements. By integrating the proposed control method into a fully autonomous delta-arm-based AM system, we substantiate the controller's efficacy through extensive real-world experiments. The outcomes illustrate that the end-effector can achieve accuracy at the millimeter level.
Abstract:Unmanned Aerial Vehicles (UAVs) play a crucial role in meteorological research, particularly in environmental wind field measurements. However, several challenges exist in current wind measurement methods using UAVs that need to be addressed. Firstly, the accuracy of measurement is low, and the measurement range is limited. Secondly, the algorithms employed lack robustness and adaptability across different UAV platforms. Thirdly, there are limited approaches available for wind estimation during dynamic flight. Finally, while horizontal plane measurements are feasible, vertical direction estimation is often missing. To tackle these challenges, we present and implement a comprehensive wind estimation algorithm. Our algorithm offers several key features, including the capability to estimate the 3-D wind vector, enabling wind estimation even during dynamic flight of the UAV. Furthermore, our algorithm exhibits adaptability across various UAV platforms. Experimental results in the wind tunnel validate the effectiveness of our algorithm, showcasing improvements such as wind speed accuracy of $0.11$ m/s and wind direction errors of less than $2.8^\circ$. Additionally, our approach extends the measurement range to $10$ m/s.