Abstract:In recent years, there has been a growing interest in data-driven evolutionary algorithms (DDEAs) employing surrogate models to approximate the objective functions with limited data. However, current DDEAs are primarily designed for lower-dimensional problems and their performance drops significantly when applied to large-scale optimization problems (LSOPs). To address the challenge, this paper proposes an offline DDEA named DSKT-DDEA. DSKT-DDEA leverages multiple islands that utilize different data to establish diverse surrogate models, fostering diverse subpopulations and mitigating the risk of premature convergence. In the intra-island optimization phase, a semi-supervised learning method is devised to fine-tune the surrogates. It not only facilitates data argumentation, but also incorporates the distribution information gathered during the search process to align the surrogates with the evolving local landscapes. Then, in the inter-island knowledge transfer phase, the algorithm incorporates an adaptive strategy that periodically transfers individual information and evaluates the transfer effectiveness in the new environment, facilitating global optimization efficacy. Experimental results demonstrate that our algorithm is competitive with state-of-the-art DDEAs on problems with up to 1000 dimensions, while also exhibiting decent parallelism and scalability. Our DSKT-DDEA is open-source and accessible at: https://github.com/LabGong/DSKT-DDEA.
Abstract:In many-task optimization scenarios, surrogate models are valuable for mitigating the computational burden of repeated fitness evaluations across tasks. This study proposes a novel meta-surrogate framework to assist many-task optimization, by leveraging the knowledge transfer strengths and emergent capabilities of large language models (LLMs). We formulate a unified framework for many-task fitness prediction, by defining a universal model with metadata to fit a group of problems. Fitness prediction is performed on metadata and decision variables, enabling efficient knowledge sharing across tasks and adaptability to new tasks. The LLM-based meta-surrogate treats fitness prediction as conditional probability estimation, employing a unified token sequence representation for task metadata, inputs, and outputs. This approach facilitates efficient inter-task knowledge sharing through shared token embeddings and captures complex task dependencies via multi-task model training. Experimental results demonstrate the model's emergent generalization ability, including zero-shot performance on problems with unseen dimensions. When integrated into evolutionary transfer optimization (ETO), our framework supports dual-level knowledge transfer -- at both the surrogate and individual levels -- enhancing optimization efficiency and robustness. This work establishes a novel foundation for applying LLMs in surrogate modeling, offering a versatile solution for many-task optimization.