Abstract:3D face alignment is a very challenging and fundamental problem in computer vision. Existing deep learning-based methods manually design different networks to regress either parameters of a 3D face model or 3D positions of face vertices. However, designing such networks relies on expert knowledge, and these methods often struggle to produce consistent results across various face poses. To address this limitation, we employ Neural Architecture Search (NAS) to automatically discover the optimal architecture for 3D face alignment. We propose a novel Multi-path One-shot Neural Architecture Search (MONAS) framework that leverages multi-scale features and contextual information to enhance face alignment across various poses. The MONAS comprises two key algorithms: Multi-path Networks Unbiased Sampling Based Training and Simulated Annealing based Multi-path One-shot Search. Experimental results on three popular benchmarks demonstrate the superior performance of the MONAS for both sparse alignment and dense alignment.