Abstract:Vehicular Ad-hoc Networks (VANETs) operate in highly dynamic environments characterized by high mobility, time-varying channel conditions, and frequent network disruptions. Addressing these challenges, this paper presents a novel temporal-aware multi-objective robust optimization framework, which for the first time formally incorporates temporal continuity into the optimization of dynamic multi-hop VANETs. The proposed framework simultaneously optimizes communication delay, throughput, and reliability, ensuring stable and consistent communication paths under rapidly changing conditions. A robust optimization model is formulated to mitigate performance degradation caused by uncertainties in vehicular density and channel fluctuations. To solve the optimization problem, an enhanced Non-dominated Sorting Genetic Algorithm II (NSGA-II) is developed, integrating dynamic encoding, elite inheritance, and adaptive constraint handling to efficiently balance trade-offs among conflicting objectives. Simulation results demonstrate that the proposed framework achieves significant improvements in reliability, delay reduction, and throughput enhancement, while temporal continuity effectively stabilizes communication paths over time. This work provides a pioneering and comprehensive solution for optimizing VANET communication, offering critical insights for robust and efficient strategies in intelligent transportation systems.