Abstract:In this paper, we present synthetic data generation framework for flood hazard detection system. For high fidelity and quality, we characterize several real-world properties into virtual world and simulate the flood situation by controlling them. For the sake of efficiency, recent generative models in image-to-3D and urban city synthesis are leveraged to easily composite flood environments so that we avoid data bias due to the hand-crafted manner. Based on our framework, we build the flood synthetic dataset with 5 levels, dubbed MultiFloodSynth which contains rich annotation types like normal map, segmentation, 3D bounding box for a variety of downstream task. In experiments, our dataset demonstrate the enhanced performance of flood hazard detection with on-par realism compared with real dataset.
Abstract:Large-scale Text-to-Image (TTI) models have become a common approach for generating training data in various generative fields. However, visual hallucinations, which contain perceptually critical defects, remain a concern, especially in non-photorealistic styles like cartoon characters. We propose a novel visual hallucination detection system for cartoon character images generated by TTI models. Our approach leverages pose-aware in-context visual learning (PA-ICVL) with Vision-Language Models (VLMs), utilizing both RGB images and pose information. By incorporating pose guidance from a fine-tuned pose estimator, we enable VLMs to make more accurate decisions. Experimental results demonstrate significant improvements in identifying visual hallucinations compared to baseline methods relying solely on RGB images. This research advances TTI models by mitigating visual hallucinations, expanding their potential in non-photorealistic domains.
Abstract:In this paper, we first present the character texture generation system \textit{Minecraft-ify}, specified to Minecraft video game toward in-game application. Ours can generate face-focused image for texture mapping tailored to 3D virtual character having cube manifold. While existing projects or works only generate texture, proposed system can inverse the user-provided real image, or generate average/random appearance from learned distribution. Moreover, it can be manipulated with text-guidance using StyleGAN and StyleCLIP. These features provide a more extended user experience with enlarged freedom as a user-friendly AI-tool. Project page can be found at https://gh-bumsookim.github.io/Minecraft-ify/