Abstract:Knowledge graph question answering (KGQA) is a well-established field that seeks to provide factual answers to natural language (NL) questions by leveraging knowledge graphs (KGs). However, existing KGQA datasets suffer from two significant limitations: (1) no existing KGQA dataset requires commonsense reasoning to arrive at an answer and (2) existing KGQA datasets focus on popular entities for which large language models (LLMs) can directly answer without hallucinating and without leveraging the KG. In this work, we seek a novel KGQA dataset that supports commonsense reasoning and focuses on long-tail entities (e.g., non-mainstream and recent entities) where LLMs frequently hallucinate, and thus create the need for novel methodologies that leverage the KG for factual and attributable commonsense inference. We create a novel Commonsense Reasoning (CR) and Long-Tail (LT) KGQA dataset with two subtasks -- question answering and claim verification -- that address both limitations (1) and (2). We construct CR-LT-KGQA by building extensions to existing reasoning datasets StrategyQA and CREAK over Wikidata. While existing KGQA methods are not applicable due to their lack of commonsense inference support, baseline evaluation of LLMs on CR-LT KGQA demonstrate a high rate of hallucination. Thus, CR-LT KGQA poses significant challenges for hallucination-prone LLMs, hence paving the way for future commonsense KGQA research to provide accurate and factual answers for long-tail entities in the era of LLMs.
Abstract:Knowledge Graph Question Answering (KGQA) methods seek to answer Natural Language questions using the relational information stored in Knowledge Graphs (KGs). With the recent advancements of Large Language Models (LLMs) and their remarkable reasoning abilities, there is a growing trend to leverage them for KGQA. However, existing methodologies have only focused on answering factual questions, e.g., "In which city was Silvio Berlusconi's first wife born?", leaving questions involving commonsense reasoning that real-world users may pose more often, e.g., "Do I need separate visas to see the Venus of Willendorf and attend the Olympics this summer?" unaddressed. In this work, we first observe that existing LLM-based methods for KGQA struggle with hallucination on such questions, especially on queries targeting long-tail entities (e.g., non-mainstream and recent entities), thus hindering their applicability in real-world applications especially since their reasoning processes are not easily verifiable. In response, we propose Right for Right Reasons (R3), a commonsense KGQA methodology that allows for a verifiable reasoning procedure by axiomatically surfacing intrinsic commonsense knowledge of LLMs and grounding every factual reasoning step on KG triples. Through experimental evaluations across three different tasks--question answering, claim verification, and preference matching--our findings showcase R3 as a superior approach, outperforming existing methodologies and notably reducing instances of hallucination and reasoning errors.