Abstract:We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.
Abstract:In the process of collectively inventing new words for new concepts in a population, conflicts can quickly become numerous, in the form of synonymy and homonymy. Remembering all of them could cost too much memory, and remembering too few may slow down the overall process. Is there an efficient behavior that could help balance the two? The Naming Game is a multi-agent computational model for the emergence of language, focusing on the negotiation of new lexical conventions, where a common lexicon self-organizes but going through a phase of high complexity. Previous work has been done on the control of complexity growth in this particular model, by allowing agents to actively choose what they talk about. However, those strategies were relying on ad hoc heuristics highly dependent on fine-tuning of parameters. We define here a new principled measure and a new strategy, based on the beliefs of each agent on the global state of the population. The measure does not rely on heavy computation, and is cognitively plausible. The new strategy yields an efficient control of complexity growth, along with a faster agreement process. Also, we show that short-term memory is enough to build relevant beliefs about the global lexicon.