Abstract:Kalman Filter (KF) is an optimal linear state prediction algorithm, with applications in fields as diverse as engineering, economics, robotics, and space exploration. Here, we develop an extension of the KF, called a Pathspace Kalman Filter (PKF) which allows us to a) dynamically track the uncertainties associated with the underlying data and prior knowledge, and b) take as input an entire trajectory and an underlying mechanistic model, and using a Bayesian methodology quantify the different sources of uncertainty. An application of this algorithm is to automatically detect temporal windows where the internal mechanistic model deviates from the data in a time-dependent manner. First, we provide theorems characterizing the convergence of the PKF algorithm. Then, we numerically demonstrate that the PKF outperforms conventional KF methods on a synthetic dataset lowering the mean-squared-error by several orders of magnitude. Finally, we apply this method to biological time-course dataset involving over 1.8 million gene expression measurements.
Abstract:Can a micron sized sack of interacting molecules autonomously learn an internal model of a complex and fluctuating environment? We draw insights from control theory, machine learning theory, chemical reaction network theory, and statistical physics to develop a general architecture whereby a broad class of chemical systems can autonomously learn complex distributions. Our construction takes the form of a chemical implementation of machine learning's optimization workhorse: gradient descent on the relative entropy cost function. We show how this method can be applied to optimize any detailed balanced chemical reaction network and that the construction is capable of using hidden units to learn complex distributions. This result is then recast as a form of integral feedback control. Finally, due to our use of an explicit physical model of learning, we are able to derive thermodynamic costs and trade-offs associated to this process.
Abstract:Can a micron sized sack of interacting molecules understand, and adapt to a constantly-fluctuating environment? Cellular life provides an existence proof in the affirmative, but the principles that allow for life's existence are far from being proven. One challenge in engineering and understanding biochemical computation is the intrinsic noise due to chemical fluctuations. In this paper, we draw insights from machine learning theory, chemical reaction network theory, and statistical physics to show that the broad and biologically relevant class of detailed balanced chemical reaction networks is capable of representing and conditioning complex distributions. These results illustrate how a biochemical computer can use intrinsic chemical noise to perform complex computations. Furthermore, we use our explicit physical model to derive thermodynamic costs of inference.