Abstract:The theory of sampling and recovery of bandlimited graph signals has been extensively studied. However, in many cases, the observation of a signal is quite coarse. For example, users only provide simple comments such as "like" or "dislike" for a product on an e-commerce platform. This is a particular scenario where only the sign information of a graph signal can be measured. In this paper, we are interested in how to sample based on sign information in an online manner, by which the direction of the original graph signal can be estimated. The online signed sampling problem of a graph signal can be formulated as a Markov decision process in a finite horizon. Unfortunately, it is intractable for large size graphs. We propose a low-complexity greedy signed sampling algorithm (GSS) as well as a stopping criterion. Meanwhile, we prove that the objective function is adaptive monotonic and adaptive submodular, so that the performance is close enough to the global optimum with a lower bound. Finally, we demonstrate the effectiveness of the GSS algorithm by both synthesis and realworld data.
Abstract:Sampling and interpolation have been extensively studied, in order to reconstruct or estimate the entire graph signal from the signal values on a subset of vertexes, of which most achievements are about continuous signals. While in a lot of signal processing tasks, signals are not fully observed, and only the signs of signals are available, for example a rating system may only provide several simple options. In this paper, the reconstruction of band-limited graph signals based on sign sampling is discussed and a greedy sampling strategy is proposed. The simulation experiments are presented, and the greedy sampling algorithm is compared with random sampling algorithm, which verify the validity of the proposed approach.