Abstract:Benefiting from a relatively larger aperture's angle, and in combination with a wide transmitting bandwidth, near-field synthetic aperture radar (SAR) provides a high-resolution image of a target's scattering distribution-hot spots. Meanwhile, imaging result suffers inevitable degradation from sidelobes, clutters, and noises, hindering the information retrieval of the target. To restore the image, current methods make simplified assumptions; for example, the point spread function (PSF) is spatially consistent, the target consists of sparse point scatters, etc. Thus, they achieve limited restoration performance in terms of the target's shape, especially for complex targets. To address these issues, a preliminary study is conducted on restoration with the recent promising deep learning inverse technique in this work. We reformulate the degradation model into a spatially variable complex-convolution model, where the near-field SAR's system response is considered. Adhering to it, a model-based deep learning network is designed to restore the image. A simulated degraded image dataset from multiple complex target models is constructed to validate the network. All the images are formulated using the electromagnetic simulation tool. Experiments on the dataset reveal their effectiveness. Compared with current methods, superior performance is achieved regarding the target's shape and energy estimation.
Abstract:Images of near-field SAR contains spatial-variant sidelobes and clutter, subduing the image quality. Current image restoration methods are only suitable for small observation angle, due to their assumption of 2D spatial-invariant degradation operation. This limits its potential for large-scale objects imaging, like the aircraft. To ease this restriction, in this work an image restoration method based on the 2D spatial-variant deconvolution is proposed. First, the image degradation is seen as a complex convolution process with 2D spatial-variant operations. Then, to restore the image, the process of deconvolution is performed by cyclic coordinate descent algorithm. Experiments on simulation and measured data validate the effectiveness and superiority of the proposed method. Compared with current methods, higher precision estimation of the targets' amplitude and position is obtained.