Abstract:Convolutional neural networks (CNNs) have been applied to learn spatial features for high-resolution (HR) synthetic aperture radar (SAR) image classification. However, there has been little work on integrating the unique statistical distributions of SAR images which can reveal physical properties of terrain objects, into CNNs in a supervised feature learning framework. To address this problem, a novel end-to-end supervised classification method is proposed for HR SAR images by considering both spatial context and statistical features. First, to extract more effective spatial features from SAR images, a new deep spatial context encoder network (DSCEN) is proposed, which is a lightweight structure and can be effectively trained with a small number of samples. Meanwhile, to enhance the diversity of statistics, the nonstationary joint statistical model (NS-JSM) is adopted to form the global statistical features. Specifically, SAR images are transformed into the Gabor wavelet domain and the produced multi-subbands magnitudes and phases are modeled by the log-normal and uniform distribution. The covariance matrix is further utilized to capture the inter-scale and intra-scale nonstationary correlation between the statistical subbands and make the joint statistical features more compact and distinguishable. Considering complementary advantages, a feature fusion network (Fusion-Net) base on group compression and smooth normalization is constructed to embed the statistical features into the spatial features and optimize the fusion feature representation. As a result, our model can learn the discriminative features and improve the final classification performance. Experiments on four HR SAR images validate the superiority of the proposed method over other related algorithms.
Abstract:Although complex-valued (CV) neural networks have shown better classification results compared to their real-valued (RV) counterparts for polarimetric synthetic aperture radar (PolSAR) classification, the extension of pixel-level RV networks to the complex domain has not yet thoroughly examined. This paper presents a novel complex-valued deep fully convolutional neural network (CV-FCN) designed for PolSAR image classification. Specifically, CV-FCN uses PolSAR CV data that includes the phase information and utilizes the deep FCN architecture that performs pixel-level labeling. It integrates the feature extraction module and the classification module in a united framework. Technically, for the particularity of PolSAR data, a dedicated complex-valued weight initialization scheme is defined to initialize CV-FCN. It considers the distribution of polarization data to conduct CV-FCN training from scratch in an efficient and fast manner. CV-FCN employs a complex downsampling-then-upsampling scheme to extract dense features. To enrich discriminative information, multi-level CV features that retain more polarization information are extracted via the complex downsampling scheme. Then, a complex upsampling scheme is proposed to predict dense CV labeling. It employs complex max-unpooling layers to greatly capture more spatial information for better robustness to speckle noise. In addition, to achieve faster convergence and obtain more precise classification results, a novel average cross-entropy loss function is derived for CV-FCN optimization. Experiments on real PolSAR datasets demonstrate that CV-FCN achieves better classification performance than other state-of-art methods.