Abstract:Graph Neural Networks (GNNs) are widely used in many modern applications, necessitating explanations for their decisions. However, the complexity of GNNs makes it difficult to explain predictions. Even though several methods have been proposed lately, they can only provide simple and static explanations, which are difficult for users to understand in many scenarios. Therefore, we introduce INGREX, an interactive explanation framework for GNNs designed to aid users in comprehending model predictions. Our framework is implemented based on multiple explanation algorithms and advanced libraries. We demonstrate our framework in three scenarios covering common demands for GNN explanations to present its effectiveness and helpfulness.
Abstract:After the COVID-19 outbreak, it has become important to automatically detect whether people are wearing masks in order to reduce risk of front-line workers. In addition, processing user data locally is a great way to address both privacy and network bandwidth issues. In this paper, we present a light-weighted model for detecting whether people in a particular area wear masks, which can also be deployed on Coral Dev Board, a commercially available development board containing Google Edge TPU. Our approach combines the object detecting network based on MobileNetV2 plus SSD and the quantization scheme for integer-only hardware. As a result, the lighter model in the Edge TPU has a significantly lower latency which is more appropriate for real-time execution while maintaining accuracy comparable to a floating point device.