Abstract:Mixed Integer Linear Programming (MILP) is a fundamental tool for modeling combinatorial optimization problems. Recently, a growing body of research has used machine learning to accelerate MILP solving. Despite the increasing popularity of this approach, there is a lack of a common repository that provides distributions of similar MILP instances across different domains, at different hardness levels, with standardized test sets. In this paper, we introduce Distributional MIPLIB, a multi-domain library of problem distributions for advancing ML-guided MILP methods. We curate MILP distributions from existing work in this area as well as real-world problems that have not been used, and classify them into different hardness levels. It will facilitate research in this area by enabling comprehensive evaluation on diverse and realistic domains. We empirically illustrate the benefits of using Distributional MIPLIB as a research vehicle in two ways. We evaluate the performance of ML-guided variable branching on previously unused distributions to identify potential areas for improvement. Moreover, we propose to learn branching policies from a mix of distributions, demonstrating that mixed distributions achieve better performance compared to homogeneous distributions when there is limited data and generalize well to larger instances.
Abstract:The concept of walkable urban development has gained increased attention due to its public health, economic, and environmental sustainability benefits. Unfortunately, land zoning and historic under-investment have resulted in spatial inequality in walkability and social inequality among residents. We tackle the problem of Walkability Optimization through the lens of combinatorial optimization. The task is to select locations in which additional amenities (e.g., grocery stores, schools, restaurants) can be allocated to improve resident access via walking while taking into account existing amenities and providing multiple options (e.g., for restaurants). To this end, we derive Mixed-Integer Linear Programming (MILP) and Constraint Programming (CP) models. Moreover, we show that the problem's objective function is submodular in special cases, which motivates an efficient greedy heuristic. We conduct a case study on 31 underserved neighborhoods in the City of Toronto, Canada. MILP finds the best solutions in most scenarios but does not scale well with network size. The greedy algorithm scales well and finds near-optimal solutions. Our empirical evaluation shows that neighbourhoods with low walkability have a great potential for transformation into pedestrian-friendly neighbourhoods by strategically placing new amenities. Allocating 3 additional grocery stores, schools, and restaurants can improve the "WalkScore" by more than 50 points (on a scale of 100) for 4 neighbourhoods and reduce the walking distances to amenities for 75% of all residential locations to 10 minutes for all amenity types. Our code and paper appendix are available at https://github.com/khalil-research/walkability.