Senior Member, IEEE
Abstract:Deep learning has recently been successfully applied in automatic modulation classification by extracting and classifying radio features in an end-to-end way. However, deep learning-based radio modulation classifiers are lack of interpretability, and there is little explanation or visibility into what kinds of radio features are extracted and chosen for classification. In this paper, we visualize different deep learning-based radio modulation classifiers by introducing a class activation vector. Specifically, both convolutional neural networks (CNN) based classifier and long short-term memory (LSTM) based classifier are separately studied, and their extracted radio features are visualized. Extensive numerical results show both the CNN-based classifier and LSTM-based classifier extract similar radio features relating to modulation reference points. In particular, for the LSTM-based classifier, its obtained radio features are similar to the knowledge of human experts. Our numerical results indicate the radio features extracted by deep learning-based classifiers greatly depend on the contents carried by radio signals, and a short radio sample may lead to misclassification.
Abstract:Deep learning has recently been applied to automatically classify the modulation categories of received radio signals without manual experience. However, training deep learning models requires massive volume of data. An insufficient training data will cause serious overfitting problem and degrade the classification accuracy. To cope with small dataset, data augmentation has been widely used in image processing to expand the dataset and improve the robustness of deep learning models. However, in wireless communication areas, the effect of different data augmentation methods on radio modulation classification has not been studied yet. In this paper, we evaluate different data augmentation methods via a state-of-the-art deep learning-based modulation classifier. Based on the characteristics of modulated signals, three augmentation methods are considered, i.e., rotation, flip, and Gaussian noise, which can be applied in both training phase and inference phase of the deep learning algorithm. Numerical results show that all three augmentation methods can improve the classification accuracy. Among which, the rotation augmentation method outperforms the flip method, both of which achieve higher classification accuracy than the Gaussian noise method. Given only 12.5% of training dataset, a joint rotation and flip augmentation policy can achieve even higher classification accuracy than the baseline with initial 100% training dataset without augmentation. Furthermore, with data augmentation, radio modulation categories can be successfully classified using shorter radio samples, leading to a simplified deep learning model and shorter the classification response time.