Senior Member, IEEE
Abstract:With the rapid development of Artificial Intelligent Internet of Things (AIoT), the image data from AIoT devices has been witnessing the explosive increasing. In this paper, a novel deep image semantic communication model is proposed for the efficient image communication in AIoT. Particularly, at the transmitter side, a high-precision image semantic segmentation algorithm is proposed to extract the semantic information of the image to achieve significant compression of the image data. At the receiver side, a semantic image restoration algorithm based on Generative Adversarial Network (GAN) is proposed to convert the semantic image to a real scene image with detailed information. Simulation results demonstrate that the proposed image semantic communication model can improve the image compression ratio and recovery accuracy by 71.93% and 25.07% on average in comparison with WebP and CycleGAN, respectively. More importantly, our demo experiment shows that the proposed model reduces the total delay by 95.26% in the image communication, when comparing with the original image transmission.
Abstract:Deep learning has recently been successfully applied in automatic modulation classification by extracting and classifying radio features in an end-to-end way. However, deep learning-based radio modulation classifiers are lack of interpretability, and there is little explanation or visibility into what kinds of radio features are extracted and chosen for classification. In this paper, we visualize different deep learning-based radio modulation classifiers by introducing a class activation vector. Specifically, both convolutional neural networks (CNN) based classifier and long short-term memory (LSTM) based classifier are separately studied, and their extracted radio features are visualized. Extensive numerical results show both the CNN-based classifier and LSTM-based classifier extract similar radio features relating to modulation reference points. In particular, for the LSTM-based classifier, its obtained radio features are similar to the knowledge of human experts. Our numerical results indicate the radio features extracted by deep learning-based classifiers greatly depend on the contents carried by radio signals, and a short radio sample may lead to misclassification.