Abstract:Repetitive action counting quantifies the frequency of specific actions performed by individuals. However, existing action-counting datasets have limited action diversity, potentially hampering model performance on unseen actions. To address this issue, we propose a framework called First Cycle Annotated Repetitive Action Counting (FCA-RAC). This framework contains 4 parts: 1) a labeling technique that annotates each training video with the start and end of the first action cycle, along with the total action count. This technique enables the model to capture the correlation between the initial action cycle and subsequent actions; 2) an adaptive sampling strategy that maximizes action information retention by adjusting to the speed of the first annotated action cycle in videos; 3) a Multi-Temporal Granularity Convolution (MTGC) module, that leverages the muli-scale first action as a kernel to convolve across the entire video. This enables the model to capture action variations at different time scales within the video; 4) a strategy called Training Knowledge Augmentation (TKA) that exploits the annotated first action cycle information from the entire dataset. This allows the network to harness shared characteristics across actions effectively, thereby enhancing model performance and generalizability to unseen actions. Experimental results demonstrate that our approach achieves superior outcomes on RepCount-A and related datasets, highlighting the efficacy of our framework in improving model performance on seen and unseen actions. Our paper makes significant contributions to the field of action counting by addressing the limitations of existing datasets and proposing novel techniques for improving model generalizability.
Abstract:Human emotion recognition holds a pivotal role in facilitating seamless human-computer interaction. This paper delineates our methodology in tackling the Valence-Arousal (VA) Estimation Challenge, Expression (Expr) Classification Challenge, and Action Unit (AU) Detection Challenge within the ambit of the 6th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW). Our study advocates a novel approach aimed at refining continuous emotion recognition. We achieve this by initially harnessing pre-training with Masked Autoencoders (MAE) on facial datasets, followed by fine-tuning on the aff-wild2 dataset annotated with expression (Expr) labels. The pre-trained model serves as an adept visual feature extractor, thereby enhancing the model's robustness. Furthermore, we bolster the performance of continuous emotion recognition by integrating Temporal Convolutional Network (TCN) modules and Transformer Encoder modules into our framework.
Abstract:Human emotion recognition plays an important role in human-computer interaction. In this paper, we present our approach to the Valence-Arousal (VA) Estimation Challenge, Expression (Expr) Classification Challenge, and Action Unit (AU) Detection Challenge of the 5th Workshop and Competition on Affective Behavior Analysis in-the-wild (ABAW). Specifically, we propose a novel multi-modal fusion model that leverages Temporal Convolutional Networks (TCN) and Transformer to enhance the performance of continuous emotion recognition. Our model aims to effectively integrate visual and audio information for improved accuracy in recognizing emotions. The model is evaluate with Concordance Correlation Coefficient (CCC)