Abstract:Formal verification can provably guarantee the correctness of critical system software, but the high proof burden has long hindered its wide adoption. Recently, Large Language Models (LLMs) have shown success in code analysis and synthesis. In this paper, we present a combination of LLMs and static analysis to synthesize invariants, assertions, and other proof structures for a Rust-based formal verification framework called Verus. In a few-shot setting, LLMs demonstrate impressive logical ability in generating postconditions and loop invariants, especially when analyzing short code snippets. However, LLMs lack the ability to retain and propagate context information, a strength of traditional static analysis. Based on these observations, we developed a prototype based on OpenAI's GPT-4 model. Our prototype decomposes the verification task into multiple smaller ones, iteratively queries GPT-4, and combines its output with lightweight static analysis. We evaluated the prototype with a developer in the automation loop on 20 vector-manipulating programs. The results demonstrate that it significantly reduces human effort in writing entry-level proof code.
Abstract:Machine learning (ML) models deployed in many safety- and business-critical systems are vulnerable to exploitation through adversarial examples. A large body of academic research has thoroughly explored the causes of these blind spots, developed sophisticated algorithms for finding them, and proposed a few promising defenses. A vast majority of these works, however, study standalone neural network models. In this work, we build on our experience evaluating the security of a machine learning software product deployed on a large scale to broaden the conversation to include a systems security view of these vulnerabilities. We describe novel challenges to implementing systems security best practices in software with ML components. In addition, we propose a list of short-term mitigation suggestions that practitioners deploying machine learning modules can use to secure their systems. Finally, we outline directions for new research into machine learning attacks and defenses that can serve to advance the state of ML systems security.