Abstract:In the context of cardiovascular diseases (CVD) that exhibit an elevated prevalence and mortality, the electrocardiogram (ECG) is a popular and standard diagnostic tool for doctors, commonly utilizing a 12-lead configuration in clinical practice. However, the 10 electrodes placed on the surface would cause a lot of inconvenience and discomfort, while the rapidly advancing wearable devices adopt the reduced-lead or single-lead ECG to reduce discomfort as a solution in long-term monitoring. Since the single-lead ECG is a subset of 12-lead ECG, it provides insufficient cardiac health information and plays a substandard role in real-world healthcare applications. Hence, it is necessary to utilize signal generation technologies to reduce their clinical importance gap by reconstructing 12-lead ECG from the real single-lead ECG. Specifically, this study proposes a multi-channel masked autoencoder (MCMA) for this goal. In the experimental results, the visualized results between the generated and real signals can demonstrate the effectiveness of the proposed framework. At the same time, this study introduces a comprehensive evaluation benchmark named ECGGenEval, encompassing the signal-level, feature-level, and diagnostic-level evaluations, providing a holistic assessment of 12-lead ECG signals and generative model. Further, the quantitative experimental results are as follows, the mean square errors of 0.0178 and 0.0658, correlation coefficients of 0.7698 and 0.7237 in the signal-level evaluation, the average F1-score with two generated 12-lead ECG is 0.8319 and 0.7824 in the diagnostic-level evaluation, achieving the state-of-the-art performance. The open-source code is publicly available at \url{https://github.com/CHENJIAR3/MCMA}.