Abstract:In this paper, we study a digital twin (DT)-empowered integrated sensing, communication, and computation network. Specifically, the users perform radar sensing and computation offloading on the same spectrum, while unmanned aerial vehicles (UAVs) are deployed to provide edge computing service. We first formulate a multi-objective optimization problem to minimize the beampattern performance of multi-input multi-output (MIMO) radars and the computation offloading energy consumption simultaneously. Then, we explore the prediction capability of DT to provide intelligent offloading decision, where the DT estimation deviation is considered. To track this challenge, we reformulate the original problem as a multi-agent Markov decision process and design a multi-agent proximal policy optimization (MAPPO) framework to achieve a flexible learning policy. Furthermore, the Beta-policy and attention mechanism are used to improve the training performance. Numerical results show that the proposed method is able to balance the performance tradeoff between sensing and computation functions, while reducing the energy consumption compared with the existing studies.
Abstract:With the high flexibility of supporting resource-intensive and time-sensitive applications, unmanned aerial vehicle (UAV)-assisted mobile edge computing (MEC) is proposed as an innovational paradigm to support the mobile users (MUs). As a promising technology, digital twin (DT) is capable of timely mapping the physical entities to virtual models, and reflecting the MEC network state in real-time. In this paper, we first propose an MEC network with multiple movable UAVs and one DT-empowered ground base station to enhance the MEC service for MUs. Considering the limited energy resource of both MUs and UAVs, we formulate an online problem of resource scheduling to minimize the weighted energy consumption of them. To tackle the difficulty of the combinational problem, we formulate it as a Markov decision process (MDP) with multiple types of agents. Since the proposed MDP has huge state space and action space, we propose a deep reinforcement learning approach based on multi-agent proximal policy optimization (MAPPO) with Beta distribution and attention mechanism to pursue the optimal computation offloading policy. Numerical results show that our proposed scheme is able to efficiently reduce the energy consumption and outperforms the benchmarks in performance, convergence speed and utilization of resources.