Abstract:In this work, we employ two AMR-enhanced semantic representations for ICL on RE: one that explores the AMR structure generated for a sentence at the subgraph level (shortest AMR path), and another that explores the full AMR structure generated for a sentence. In both cases, we demonstrate that all settings benefit from the fine-grained AMR's semantic structure. We evaluate our model on four RE datasets. Our results show that our model can outperform the GPT-based baselines, and achieve SOTA performance on two of the datasets, and competitive performance on the other two.