Abstract:The density matrices are positively semi-definite Hermitian matrices of unit trace that describe the state of a quantum system. The goal of the paper is to develop minimax lower bounds on error rates of estimation of low rank density matrices in trace regression models used in quantum state tomography (in particular, in the case of Pauli measurements) with explicit dependence of the bounds on the rank and other complexity parameters. Such bounds are established for several statistically relevant distances, including quantum versions of Kullback-Leibler divergence (relative entropy distance) and of Hellinger distance (so called Bures distance), and Schatten $p$-norm distances. Sharp upper bounds and oracle inequalities for least squares estimator with von Neumann entropy penalization are obtained showing that minimax lower bounds are attained (up to logarithmic factors) for these distances.
Abstract:Let ${\mathcal S}_m$ be the set of all $m\times m$ density matrices (Hermitian positively semi-definite matrices of unit trace). Consider a problem of estimation of an unknown density matrix $\rho\in {\mathcal S}_m$ based on outcomes of $n$ measurements of observables $X_1,\dots, X_n\in {\mathbb H}_m$ (${\mathbb H}_m$ being the space of $m\times m$ Hermitian matrices) for a quantum system identically prepared $n$ times in state $\rho.$ Outcomes $Y_1,\dots, Y_n$ of such measurements could be described by a trace regression model in which ${\mathbb E}_{\rho}(Y_j|X_j)={\rm tr}(\rho X_j), j=1,\dots, n.$ The design variables $X_1,\dots, X_n$ are often sampled at random from the uniform distribution in an orthonormal basis $\{E_1,\dots, E_{m^2}\}$ of ${\mathbb H}_m$ (such as Pauli basis). The goal is to estimate the unknown density matrix $\rho$ based on the data $(X_1,Y_1), \dots, (X_n,Y_n).$ Let $$ \hat Z:=\frac{m^2}{n}\sum_{j=1}^n Y_j X_j $$ and let $\check \rho$ be the projection of $\hat Z$ onto the convex set ${\mathcal S}_m$ of density matrices. It is shown that for estimator $\check \rho$ the minimax lower bounds in classes of low rank density matrices (established earlier) are attained up logarithmic factors for all Schatten $p$-norm distances, $p\in [1,\infty]$ and for Bures version of quantum Hellinger distance. Moreover, for a slightly modified version of estimator $\check \rho$ the same property holds also for quantum relative entropy (Kullback-Leibler) distance between density matrices.
Abstract:This paper deals with the trace regression model where $n$ entries or linear combinations of entries of an unknown $m_1\times m_2$ matrix $A_0$ corrupted by noise are observed. We propose a new nuclear norm penalized estimator of $A_0$ and establish a general sharp oracle inequality for this estimator for arbitrary values of $n,m_1,m_2$ under the condition of isometry in expectation. Then this method is applied to the matrix completion problem. In this case, the estimator admits a simple explicit form and we prove that it satisfies oracle inequalities with faster rates of convergence than in the previous works. They are valid, in particular, in the high-dimensional setting $m_1m_2\gg n$. We show that the obtained rates are optimal up to logarithmic factors in a minimax sense and also derive, for any fixed matrix $A_0$, a non-minimax lower bound on the rate of convergence of our estimator, which coincides with the upper bound up to a constant factor. Finally, we show that our procedure provides an exact recovery of the rank of $A_0$ with probability close to 1. We also discuss the statistical learning setting where there is no underlying model determined by $A_0$ and the aim is to find the best trace regression model approximating the data.