Abstract:Floods can cause horrific harm to life and property. However, they can be mitigated or even avoided by the effective use of hydraulic structures such as dams, gates, and pumps. By pre-releasing water via these structures in advance of extreme weather events, water levels are sufficiently lowered to prevent floods. In this work, we propose FIDLAR, a Forecast Informed Deep Learning Architecture, achieving flood management in watersheds with hydraulic structures in an optimal manner by balancing out flood mitigation and unnecessary wastage of water via pre-releases. We perform experiments with FIDLAR using data from the South Florida Water Management District, which manages a coastal area that is highly prone to frequent storms and floods. Results show that FIDLAR performs better than the current state-of-the-art with several orders of magnitude speedup and with provably better pre-release schedules. The dramatic speedups make it possible for FIDLAR to be used for real-time flood management. The main contribution of this paper is the effective use of tools for model explainability, allowing us to understand the contribution of the various environmental factors towards its decisions.
Abstract:Floods can be very destructive causing heavy damage to life, property, and livelihoods. Global climate change and the consequent sea-level rise have increased the occurrence of extreme weather events, resulting in elevated and frequent flood risk. Therefore, accurate and timely flood forecasting in coastal river systems is critical to facilitate good flood management. However, the computational tools currently used are either slow or inaccurate. In this paper, we propose a Flood prediction tool using Graph Transformer Network (FloodGTN) for river systems. More specifically, FloodGTN learns the spatio-temporal dependencies of water levels at different monitoring stations using Graph Neural Networks (GNNs) and an LSTM. It is currently implemented to consider external covariates such as rainfall, tide, and the settings of hydraulic structures (e.g., outflows of dams, gates, pumps, etc.) along the river. We use a Transformer to learn the attention given to external covariates in computing water levels. We apply the FloodGTN tool to data from the South Florida Water Management District, which manages a coastal area prone to frequent storms and hurricanes. Experimental results show that FloodGTN outperforms the physics-based model (HEC-RAS) by achieving higher accuracy with 70% improvement while speeding up run times by at least 500x.
Abstract:Accurate time series forecasting is a fundamental challenge in data science. It is often affected by external covariates such as weather or human intervention, which in many applications, may be predicted with reasonable accuracy. We refer to them as predicted future covariates. However, existing methods that attempt to predict time series in an iterative manner with autoregressive models end up with exponential error accumulations. Other strategies hat consider the past and future in the encoder and decoder respectively limit themselves by dealing with the historical and future data separately. To address these limitations, a novel feature representation strategy -- shifting -- is proposed to fuse the past data and future covariates such that their interactions can be considered. To extract complex dynamics in time series, we develop a parallel deep learning framework composed of RNN and CNN, both of which are used hierarchically. We also utilize the skip connection technique to improve the model's performance. Extensive experiments on three datasets reveal the effectiveness of our method. Finally, we demonstrate the model interpretability using the Grad-CAM algorithm.
Abstract:In this work we study a variant of the well-known multi-armed bandit (MAB) problem, which has the properties of a delay in feedback, and a loss that declines over time. We introduce an algorithm, EXP4-DFDC, to solve this MAB variant, and demonstrate that the regret vanishes as the time increases. We also show that LeCaR, a previously published machine learning-based cache replacement algorithm, is an instance of EXP4-DFDC. Our results can be used to provide insight on the choice of hyperparameters, and optimize future LeCaR instances.