Abstract:For diagnosis of shoulder illness, it is essential to look at the morphology deviation of scapula and humerus from the medical images that are acquired from Magnetic Resonance (MR) imaging. However, taking high-resolution MR images is time-consuming and costly because the reduction of the physical distance between image slices causes prolonged scanning time. Moreover, due to the lack of training images, images from various sources must be utilized, which creates the issue of high variance across the dataset. Also, there are human errors among the images due to the fact that it is hard to take the spatial relationship into consideration when labeling the 3D image in low resolution. In order to combat all obstacles stated above, we develop a fully automated algorithm for segmenting the humerus and scapula bone from coarsely scanned and low-resolution MR images and a recursive learning framework that iterative utilize the generated labels for reducing the errors among segmentations and increase our dataset set for training the next round network. In this study, 50 MR images are collected from several institutions and divided into five mutually exclusive sets for carrying five-fold cross-validation. Contours that are generated by the proposed method demonstrated a high level of accuracy when compared with ground truth and the traditional method. The proposed neural network and the recursive learning scheme improve the overall quality of the segmentation on humerus and scapula on the low-resolution dataset and reduced incorrect segmentation in the ground truth, which could have a positive impact on finding the cause of shoulder pain and patient's early relief.
Abstract:For the initial shoulder preoperative diagnosis, it is essential to obtain a three-dimensional (3D) bone mask from medical images, e.g., magnetic resonance (MR). However, obtaining high-resolution and dense medical scans is both costly and time-consuming. In addition, the imaging parameters for each 3D scan may vary from time to time and thus increase the variance between images. Therefore, it is practical to consider the bone extraction on low-resolution data which may influence imaging contrast and make the segmentation work difficult. In this paper, we present a joint segmentation for the humerus and scapula bones on a small dataset with low-contrast and high-shape-variability 3D MR images. The proposed network has a deep end-to-end architecture to obtain the initial 3D bone masks. Because the existing scarce and inaccurate human-labeled ground truth, we design a self-reinforced learning strategy to increase performance. By comparing with the non-reinforced segmentation and a classical multi-atlas method with joint label fusion, the proposed approach obtains better results.